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Abstract-Forced convection heat transfer from an isolated cylinder in crossflow is investigated for 
Reynolds numbers up to 200 by direct numerical simulation of the Navier-Stokes and energy equations 
using the spectral element method. The numerical predictions for the size of the wake, the temporal and 
spatial structure of the von Karman vortex street, the unsteady lift and drag coefficient, and the unsteady 
local heat transfer coefficient are all in excellent agreement with available experimental data. Various 
outflow boundary conditions for the velocity field are employed to account for the unboundedness of 
the domain, while for the temperature field the conditions of uniform heat flux and constant cylinder 

temperature are simulated. 

INTRODUCTION 

THE FLOW past a circular cylinder has long been a 
model for fundamental studies of challenging fluid 
mechanics problems, as well as representing an impor- 
tant class of engineering applications. Beginning with 
the work of Bknard (1908) [ 11, von Karman (19 11) [2] 
and Nayler and Frayzer ( 19 17) [3] on the development 
of the vortex street, many studies of the cylinder flow 
problem have been undertaken. As regards heat trans- 
fer, Schmidt and Wenner [4] were the first to report 
on local transport rates from the cylinder surface. 
Since then, numerous experimental results and empiri- 
cal correlations for the heat transfer and drag on the 
cylinder have been reported in the literature [5-lo]. 
However, to our knowledge, no accurate numerical 
predictions for unsteady heat transfer have appeared 
yet. 

In this paper, we present results of numerical simu- 
lation of the unsteady Navier-Stokes and energy equa- 
tions for laminar two-dimensional flow past a circular 
cylinder. The numerical results are obtained using 
a general-purpose spectral element code, NEKTON 
[l 11. The purpose of the work is twofold : (1) to 
achieve a relatively complete set of (experimentally 
validated) numerical results for low to moderate 
Reynolds number bluff body heat transfer; (2) to 
demonstrate the accuracy of the spectral element 
method [12-141. As regards the latter, the problem of 
flow past a cylinder serves as a severe test of a numeri- 
cal method due to the unbounded domain and the 
highly unsteady nature of the flow field. Furthermore, 
correct prediction of local transport rates requires 
resolution of both the (fore) boundary layer and (aft) 
wake structure of the near cylinder flow. 

PROBLEM FORMULATION 
AND NUMERICAL METHODS 

We consider here flow past a cylinder in the domain 

depicted in Fig. 1. The momentum, continuity and 
energy equations governing the flow are given by 

v, = vxw-VI-I+Re-‘V’v 

v-v=0 

T,+V*(vT) = (RePr)-‘V*T 

(la) 

(lb) 

(14 

respectively, where v(x) (=ua+vg) is the velocity, 
T(x) the temperature, o the vorticity, UJ = VXV, 
fI = p+ 1/2v * v the dynamic pressure, Re = U,Djv 
the Reynolds number, and Pr = v/u the Prandtl 
number. Here U, is the freestream velocity, D the 
cylinder diameter, v the kinematic viscosity of the fluid 
and CI the thermal diffusivity. All velocities and lengths 
are scaled by U, and by the cylinder radius R, respec- 
tively. 
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FIG. 1. Geometry definition for flow past a cylinder in an 
unbounded domain. 
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Co drag coefficient, FD/(l/2pU2,D) 

Cl. lift coefficient, FL/(1 /2pU2,D) 

f 

cylinder diameter 
shedding frequency 

FL3 cylinder drag force 

FL cylinder lift force 
h heat transfer coefficient 
k thermal conductivity 
L wake length 
Nu Nusselt number, q”D/(kAT) 

Nn,.r time-averaged Nusselt number 
NM,, space- and time-averaged Nusselt 

number 

P static pressure 
Pr Prandtl number, v/a 

q” cylinder heat flux 
R cylinder radius 

Re Reynolds number, lJ,D/v 
St Strouhal number, fD/iJ, 
t non-dimensional time, R/U, 
T temperature 
AT temperature difference, T,-T, 

u, freestream velocity 
V velocity vector, u.< + z$ . 

Greek symbols 
0 non-dimensional temperature, 

(T- T,),/AT or (T- T~)k~~~“R) 
V kinematic viscosity 
II dynamic pressure 

P density 
z time period of vortex shedding 
0 vorticity. 

The boundary conditions on v are 

v=O on ao, 

v=>U,g as lx/=joo 

methods with the geometric flexibility of finite element 

(2a) 
schemes. In the spectral element discretization, the 
domain is broken up into general, four-sided (quad- 

(2b) rangular) elements and the geometry, velocity, pres- 

where al3, is the cylinder surface. For the tem~rature 
sure, and temperature are represented as high-order 

we impose either 
Lagrangian interpolants through Chebyshev or 
Legendre collocation points. The integration proceeds 

e = 1 on aD, (3a) by-treating the nor&near terms explicitly in time 

e=.o as (xl=-CO 
(3b) (third-order Adams-Bashforth) with collocation in 

space, followed by implicit treatment of the pressure 
or and viscous terms using standard variational spatial 

VB*ti = 1 on aD, (4a) projection operators. 

e-0 as JxI=.m (4b) 
The spectral element method is a technique par- 

titularly appropriate for direct simulations of 
with0 = (T-TJ/(T,-T,)and (T-T,,)k/(q”R)in unsteady and transitional flows, due to its rapid 
equations (3) and (4), respectively. Equation (3) cor- (exponential) convergence, good resolution proper- 
responds to imposed constant cylinder temperature, ties, and minimal numerical dispersion and diffusion. 
whereas equation (4) represents a constant flux A typical spectral element mesh for our cylinder cal- 
boundary condition. Here T, is the cylinder tem- culations is shown in Fig. 2, where it can be seen that 
perature, T, the temperature at infinity, q” the flux very high resolution is placed near the cylinder in 
at the cylinder surface, and k the thermal conductivity order to resolve the momentum and thermal bound- 
of the fluid. ary layer. The boundary conditions on the com- 

To solve the above equations numerically, we use putational mesh are taken to be uniform oncoming 
the general purpose code NEKTON [ll], which is flow, potential flow at side ‘walls’, no-slip on the cyl- 
based on the spectral element method. The iso- inder walls, and outflow Neumann conditions 
parametric spectral element method [12-141 is a high- (a * j&r = 0, where n denotes normal to the boundary 
order technique that combines the accuracy of spectral direction) at the downstream boundary. Various 

FIG. 2. A typical spectral element mesh. Notice the flexible resolution of the elemental decomposition. 
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experiments were carried out to verify the mesh inde- 
pendence of the solution and different boundary con- 
ditions at the truncation of the infinite domain were 
employed. The results in all cases were found to differ 
by less than 1%. 

RESULTS AND DISCUSSION 

Steady state flow 
For Reynolds numbers less than approximately 40 

the cylinder flow is steady and takes the form of an 
attached pair of vortices behind the cylinder. In Figs. 3 
and 4 we compare our results to previous experimental 
[15] and numerical results [16] for the transient devel- 
opment of the vortices (impulsive start), and steady 
state wake length, respectively. In both cases the 
agreement is excellent. At Re = 40 the wake flow is 
already unstable far downstream but a pair of vortices 
remains attached to the cylinder surface. 

Vortex shedding 
A typical streamline pattern of the unsteady flow, 

which occurs for a Reynolds number greater than 40, is 
presented in Fig. 5 at a Reynolds number of 150 every 
~/3, where t is the period of natural shedding. In Fig. 
6(a) instantaneous velocity profiles in the cir- 
cumferential direction for Re = 200 are plotted at 
different positions along the cylinder periphery cor- 
responding to a velocity field depicted in Fig. 6(b) as 
a streamline plot. The good resolution of the thin 
boundary layers is clearly demonstrated (the bound- 
ary layer thickness is approximately 8% of the 
cylinder diameter at this Reynolds number). In Table 
1 a summary of the predicted shedding frequency 
(Strouhal number, fD/U,) is given for the Reynolds 
numbers studied, along with the available exper- 
imental and numerical results from previous studies 
[17,18]. 
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FIG. 3. Comparison of predicted wake length vs dimen- 
sionless time for Re = 30. 40 with experiment [15]. 
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FIG. 4. Wake length vs Reynolds number. Comparison with 
experiment [15] and another numerical scheme [16]. 

In Fig. 7(b) the instantaneous temperature field is 
plotted for Re = 100 and Pr = 2. The close re- 
semblance of these temperature contours with the 
streakline photographs obtained experimentally 
[I 5,241 can be seen by comparing Fig. 7(b) with Fig. 
7(a). The shape of the vortices and their locations as 
predicted by NEKTON compare very well with the 
shape and location of the vortices in the physical 
experiment, although the visualization mechanisms 
are somewhat different. The plot of instantaneous 
isotherms demonstrates the minimal dispersion of the 
spectral element method [25], and the fact that the 
method correctly predicts the spatial structure of the 
von Karman street. 

Heat transfer results 
In Figs. 8(aF(c) we plot NEKTON predictions 

for the local time-averaged Nusselt number 
Nu,, = q”D/(k(TW - T,)) for constant heat Jlux con- 
ditions (equation (4)) as a function of angle vs Eckert’s 
experimental [19] and numerical [20] results for 
Re = 20, 100 and 200, respectively and Pr = 0.7. It 
should be noted here that Eckert’s experimental 
results are based on an assumption of an empirical 
relationship between the average Nusselt number and 
Reynolds number, Nu = 0.43 +0.48Re’12. This relation- 
ship was used in ref. [19] to deduce the Reynolds 
number from the Nusselt number, since at the time 

Table 1 

Re 
Gerrard Gresho et al. 

Present work (exp. [17]) (num. [18]) 

50 0.14 0.14 0.14 
100 0.18 0.17 0.18 
200 0.20 0.18-0.20 0.22 
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Vortex Shedding: Re - 150 

time - rf-3 time - T 

FIG. 5. The von Karman vortex street and details of shedding during a flow cycle for Re = 150. 

the measurements were made (1953) no inst~ent not valid in the wake, where other empirical formulas 
was available to measure the low air velocities as- have been proposed with higher powers of Reynolds 
sociated with these Reynolds numbers. This empirical number [9]. It is, therefore, expected that the Reynolds 
relationship is, in fact, a good approximation only in number in ref. [19] was overestimated, that is, the 
the front sta~ation region of the cylinder, and it is Nusselt number measured actually occurs at lower 

Urn_ 
FLOW 

(4 (b) 

FIG. 6. (a) Instantaneous velocity profiles in circumferential direction for Re = 200. The boundary layer 
is resolved with at least three mesh nodes in all calculations. (b) Corresponding streamline plot. 
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(b) 
FIG. 7. Instantaneous temperature contours for Re = 100 and Pr = 2. Notice the close resemblance 
with the photographs from experiments by S. Taneda, An Album qf Fluid Motion, photograph No. 96 

(Ed. Van Dyke). 

Reynolds number. This is consistent with the dis- 
crepancy in Fig. 8(c). 

We also note that the numerical results published 
by Krall and Eckert in 1970 [30] are based on the 
assumption of steady flow, which results in over- 
estimation of the Nusselt number in the stagnation 
region of the flow, and incorrect predictions for the 
Nusselt number in the wake region of the flow at 
higher Reynolds numbers. The discrepancy between 
the NEKTON results and Eckert’s steady numerical 
results is consistent with these facts. 

In Fig. 9 the surface temperature, 0, for constant 
cylinder flux at Re = 150 and Pr = 0.70 is plotted as 
a function of time at the rear stagnation point A and 
at 67.5” from the front stagnation point, at point B. 
It is seen that the temperature at the stagnation point 
oscillates twice as fast and corresponds to a larger 
amplitude. This reflects the fact that the rear stag- 
nation point, being on the cylinder centerline, is influ- 
enced by the alternating detachment of vortices from 
both separation points every r/2, whereas any other 
point off the centerline on the cylinder surface is influ- 
enced by the detachment of vortices from one sep- 
aration point only every T. The temperature field is 
out of phase with the velocity field but its time history 
closely follows the time history of the x-component u 
of the velocity, which also oscillates with r/2 at the 
centerline. However, the y-component v of velocity 
oscillates with period T everywhere in the flow field 
and it is, too, out of phase with the x-velocity com- 
ponent. This is demonstrated in Figs. 10(a)-(c), where 
the x-, y-velocity components u and v and the tem- 

perature B at a point located 0.920 downstream of 
the cylinder and slightly (0.0680) above the centerline 
are plotted as a function of time for Re = 150 and 
Pr = 0.7. 

In Fig. 11, we plot the time-averaged circum- 
ferential variation of heat transfer coefficient, in 
the case of constant cylinder surface temperature, 

where very good agreement with the classical results 
of Schmidt and Wenner (Re = 31000) [4], and the 
more recently obtained experimental results can be 
seen, especially in the wake region of the flow [21]. In 
Fig. 12 the time- and space-averaged Nu,,, coefficient 

is plotted as a function of Reynolds number over 
the range 0 < Re < 200 for the constant temperature 
boundary condition, where it is seen that there is 
excellent agreement with available correlations [6,26]. 

Cylinder drag results 

In Fig. 13, the cylinder drag coefficient, 
C, = FJ( 112~ UiD), is plotted as a function of Reyn- 
olds number and compared with experimental results 
[22] ; again, the agreement is excellent for this range 
of Reynolds number. Recent numerical data by Braza 
et al. (231 is also in very good agreement with our 
predictions. In Figs. 14(a) and (b) the two components 
of the total cylinder drag, namely the viscous and 
pressure (form) drag coefficients, defined as F,,,,,/ 

(1/2pUiD) and F,,,,,,/(1/2pU~D), respectively, are 
plotted as a function of time for a representative case 
of Reynolds number of 200. Again the presence of 
different frequency components is observed as com- 
pared to the lift coefficient, CL = F,/(1/2pUiD), in 
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(a) 

=3 
Flow 

(b) 

=B 
Flow 

Eckert. exper. (1952) 
Eckert. numer. (1970) 
NEKTON, (1966) 

q 6.0 

---- Eckert, ewper. (1952) 
- Eckert, numer. (1970) 

-=&+-- NEKTON, 1,966, 

FIG. 8. Predicted local heat transfer distribution around the cylinder.surface for constant heat flux compared 
with Eckert’s experimental and numerical results [19,20] : (a) Re = 20, Pr = 0.70; (b) Re = 100, Pr = 0.70 ; 

(c) Re = 200, Pr = 0.70. 
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FIG. 10. Time history for Re = 150 and Pr = 0.70 of x-velocity (a) y-velocity (b) and temperature (c) at a 
point located 0.920 from the rear stagnation point and 0.0680 above the centerline. 
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FIG. 12. Average Nusselt number vs Reynolds number; comparison with empirical formulas [6,26]. 
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Nekton. 1986 
[22] , expel-. 
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REYNOLDS NUflBER 

FIG. 13. Cylinder drag coefficient vs Reynolds number; comparison with experimental results [22] 
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FIG. 14(a). The pressure component of cylinder drag as a function of time for Re = 200; note the presence 
of higher harmonics. 
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FIG. 14(b). The viscous component of cylinder drag as a function of time for Re = 200 ; higher harmonics 
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Fie. 15. which oscillates with the fundamental fre- 
Y , 

tribution around a cvlinder in nulsating crossflow. Trans. 
ASME 107,976 (1985). - - 

11. NEKTON User’s Manual, Nektonics Inc., Bedford, 
Massachusetts (1986). 

12. A. T. Patera, A spectral element method for fluid dynam- 
ics ; laminar flow in a channel expansion, J. Comp. Phys. 
54,468 (1984). 

quency. More specifically, the drag coefficient oscil- 
lates with period r/2 and has a higher frequency com- 
ponent corresponding to 214 in its signal. The space- 
averaged Nusselt number also exhibits similar 
behavior as the drag coefficient [25]. The explanation 
for this is that whereas the Nusselt number and the 
drag coefficient cannot distinguish between events 
that occur on the top and bottom of the cylinder, the 
lift coefficient (force in the y-direction) can. 
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SIMULATION NUMERIQUE DE LA CONVECTION THERMIQUE FORCEE AUTOUR 
DUN CYLINDRE EN ATTAQUE TRANSVERSALE 

R&sum&La convection thermique for&e autour d’un cylindre en attaque transversale est Btudiee, pour 
un nombre de Reynolds allant jusqu’a 200, par simulation numtrique directe des equations de Navier- 
Stokes et d’tnergie en utilisant la methode spectrale. Les predictions numeriques de la dimension du sillage, 
de la structure temporelle et spatiale de l’allee de tourbillons de von Karman, des coefficients variables de 
portance, de trainee et de transfert thermique local; sont tous en excellent accord avec les don&es 
experimentales disponibles. Differentes conditions limites pour le champ de vitesse externe sont utilistes 
pour tenir compte de l’ttendue illimitee du domaine, tandis que sont simulees pour le champ de temperature, 

les conditions de flux de chaleur uniforme ou de temperature constante sur le cylindre. 
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NUMERISCHE SIMULATION DES WARMEtiBERGANGS BEI ERZWUNGENER 
QUERANSTROMUNG EINES ZYLINDERS 

Zusammenfassung-Es wird der Warmetibergang bei erzwungener Queranstriimung eines einzelnen Zy- 
linders fiir Reynolds-Zahlen oberhalb 200 durch numerische Simulation der Navier-Stokes’schen und der 
Energiegleichungen mit Hilfe der Spektral-Element-Methode untersucht. Die numerischen Vorhersagen 
fur die GriiBe des Nachlaufhereichs, fiir die zeitliche und raumliche Struktur der von Karman’schen 
WirbelstraDe, fur die instationlren Auftriebs- und Widerstandskoeffizienten und fiir den lokalen insta- 
tionlren Warmeiibergangskoeffizienten stimmen sehr gut mit den verfiigbaren experimentellen Daten 
tiberein. Zur Berticksichtigung des unendlich ausgedehnten Striimungsgebiets werden bei der Berechnung 
des Geschwindigkeitsfelds verschiedene Randbedingungen herangezogen, wahrend fur das Temperaturfeld 

die Randbedingungen 1. und 2. Art simuliert werden. 

‘IHCJIEHHOE MOJJBJIMPOBAHME TEI-IJIOOTj.JA~H I-IOfIEPErIHO 06TEKAEMOT0 
L(HJIMH~PA HPA BMHY’HCHEHHOR KOHBEKHHH 

&IImPUMS-MeTOAOM IIPSIMOI-0 YHCJlHiHOrO MOAeAHpOBaHHX )‘paBHeHHfi HaBbe<TOKCa H )‘paBHeHHfi 

3HepI’HH C HCIlOnb30BaHHeM ClleKTpZ3JTbHOrO MeTOAa 3neMeHTOB HCCneAOBaHa TellnOOTAaW IlOlle~‘IHO 

o6reKaeMoro OAHH04HOrO UHnHHApa IIpH BbUi)‘XCAeHHOii KOHBeKAHH AJIll 3Ha’ieHHfi qHCJla P&HOJlbAL3 

A0 200. PesynbTarbl =tncnemibtx pacueroe pashfepa cnena, spehtemiol H npocrpancr0emioB CTPYKTY~ 

BtiXpeBOif AOPOXCKH KapMana, HecTamioHapHoro K03$@iA&ieHTa IIOA~MHO~ CHnbI, no6osoro conpo- 
THBneHHIl H nOKanbHOr0 K03#)H~t2HTa HWTalUiOHapHOrO Tennoo6MeHa XOPOLUO COUlaCytoTCK C 

HMeH)“IHMHCR 3KCllePHMeHTlinbHbIMII AaHHbtMii. &Ill )“IeTa HeOQXlHEi’IeHHOrO XapaKTepa PaC’leTHOfi 

o6nacrn ncnonbsymrcn pa3nmnibte rpannmibte ycnonnr rt.nn norm cKopocrn, B To spehtn KaK n.nn ret+ 
neparyprioro norm Mortennpyionorcn ycnoenn panrioMepttor0 rennonoro nororca n nocronmioii retbmepa- 

T)‘Pbl WUlHHApa. 


